491 research outputs found

    Large-amplitude inviscid fluid motion in an accelerating container

    Get PDF
    Study of dynamic behavior of the liquid-vapor interface of an inviscid fluid in an accelerating cylindrical container includes an analytical-numerical method for determining large amplitude motion. The method is based on the expansion of the velocity potential in a series of harmonic functions with time dependent coefficients

    Emerging singularities in the bouncing loop cosmology

    Full text link
    In this paper we calculate O(μ4)\mathcal{O}(\mu^4) corrections from holonomies in the Loop Quantum Gravity, usually not taken into account. Allowance of the corrections of this kind is equivalent with the choice of the new quatization scheme. Quantization ambiguities in the Loop Quantum Cosmology allow for this additional freedom and presented corrections are consistent with the standard approach. We apply these corrections to the flat FRW cosmological model and calculate the modified Friedmann equation. We show that the bounce appears in the models with the standard O(μ2)\mathcal{O}(\mu^2) quantization scheme is shifted to the higher energies ρbounce=3ρc\rho_{\text{bounce}} = 3 \rho_{\text{c}}. Also a pole in the Hubble parameter appears for ρpole=3/2ρc\rho_{\text{pole}} = {3/2} \rho_{\text{c}} corresponding to \emph{hyper-inflation/deflation} phases. This pole represents a curvature singularity at which the scale factor is finite. In this scenario the singularity and bounce co-exist. Moreover we find that an ordinary bouncing solution appears only when quantum corrections in the lowest order are considered. Higher order corrections can lead to the nonperturbative effects.Comment: RevTeX4, 8 pages, 4 figures; v2 change of title, more discussion on co-existence of singularity and bounc

    Melnikov's method, stochastic layers and nonintegrability of a perturbed Duffing-oscillator

    Get PDF

    Dynamics of thin-film spin-flip transistors with perpendicular source-drain magnetizations

    Full text link
    A "spin-flip transistor" is a lateral spin valve consisting of ferromagnetic source drain contacts to a thin-film normal-metal island with an electrically floating ferromagnetic base contact on top. We analyze the \emph{dc}-current-driven magnetization dynamics of spin-flip transistors in which the source-drain contacts are magnetized perpendicularly to the device plane by magnetoelectronic circuit theory and the macrospin Landau-Lifshitz-Gilbert equation. Spin flip scattering and spin pumping effects are taken into account. We find a steady-state rotation of the base magnetization at GHz frequencies that is tuneable by the source-drain bias. We discuss the advantages of the lateral structure for high-frequency generation and actuation of nanomechanical systems over recently proposed nanopillar structures.Comment: Accepted by Phys.Rev.B as regular articl

    Simulation of neutrino and charged particle production and propagation in the atmosphere

    Get PDF
    A precise evaluation of the secondary particle production and propagation in the atmosphere is very important for the atmospheric neutrino oscillation studies. The issue is addressed with the extension of a previously developed full 3-Dimensional Monte-Carlo simulation of particle generation and transport in the atmosphere, to compute the flux of secondary protons, muons and neutrinos. Recent balloon borne experiments have performed a set of accurate flux measurements for different particle species at different altitudes in the atmosphere, which can be used to test the calculations for the atmospheric neutrino production, and constrain the underlying hadronic models. The simulation results are reported and compared with the latest flux measurements. It is shown that the level of precision reached by these experiments could be used to constrain the nuclear models used in the simulation. The implication of these results for the atmospheric neutrino flux calculation are discussed.Comment: 11 pages, 9 figure

    Normal forms approach to diffusion near hyperbolic equilibria

    Full text link
    We consider the exit problem for small white noise perturbation of a smooth dynamical system on the plane in the neighborhood of a hyperbolic critical point. We show that if the distribution of the initial condition has a scaling limit then the exit distribution and exit time also have a joint scaling limit as the noise intensity goes to zero. The limiting law is computed explicitly. The result completes the theory of noisy heteroclinic networks in two dimensions. The analysis is based on normal forms theory.Comment: 21 page

    Limit cycles of quadratic systems in the plane

    Get PDF

    A Theoretical Framework for the Analysis of the West Nile Virus Epidemic

    Full text link
    We present a model for the growth of West Nile virus in mosquito and bird populations based on observations of the initial epidemic in the U.S. Increase of bird mortality as a result of infection, which is a feature of the epidemic, is found to yield an effect which is observable in principle, viz., periodic variations in the extent of infection. The vast difference between mosquito and bird lifespans, another peculiarity of the system, is shown to lead to interesting consequences regarding delay in the onset of the steady-state infection. An outline of a framework is provided to treat mosquito diffusion and bird migration.Comment: 12 pages, 9 postscript figure

    Extended Quintessence with non-minimally coupled phantom scalar field

    Full text link
    We investigate evolutional paths of an extended quintessence with a non-minimally coupled phantom scalar field ψ\psi to the Ricci curvature. The dynamical system methods are used to investigate typical regimes of dynamics at the late time. We demonstrate that there are two generic types of evolutional scenarios which approach the attractor (a focus or a node type critical point) in the phase space: the quasi-oscillatory and monotonic trajectories approach to the attractor which represents the FRW model with the cosmological constant. We demonstrate that dynamical system admits invariant two-dimensional submanifold and discussion that which cosmological scenario is realized depends on behavior of the system on the phase plane (ψ,ψ)(\psi, \psi'). We formulate simple conditions on the value of coupling constant ξ\xi for which trajectories tend to the focus in the phase plane and hence damping oscillations around the mysterious value w=1w=-1. We describe this condition in terms of slow-roll parameters calculated at the critical point. We discover that the generic trajectories in the focus-attractor scenario come from the unstable node. It is also investigated the exact form of the parametrization of the equation of state parameter w(z)w(z) (directly determined from dynamics) which assumes a different form for both scenarios.Comment: revtex4, 15 pages, 9 figures; (v2) published versio

    An asymptotic formula for marginal running coupling constants and universality of loglog corrections

    Full text link
    Given a two-loop beta function for multiple marginal coupling constants, we derive an asymptotic formula for the running coupling constants driven to an infrared fixed point. It can play an important role in universal loglog corrections to physical quantities.Comment: 16 pages; typos fixed, one appendix removed for quick access to the main result; to be published in J. Phys.
    corecore